Skip to content

Biotechnology

Reversibility, Colds, and Neurosurgery

By Jonny Pugh

This blog was originally published on the Journal of Medical Ethics Blog

 

Happy new year to readers of the blog!

I always approach the new year with some trepidation. This is not just due to the terrible weather, or even my resolution to take more exercise (unfortunately in the aforementioned terrible weather). Instead, I approach January with a sense of dread because it is always when I seem to come down with the common cold.

In my recent research, I have been interested in the nature and moral significance of reversibility, and the common cold is an interesting case study of this concept. In this blog, I will use this example to very briefly preview a couple of points that I make in a forthcoming open access article about reversibility in the context of psychiatric neurosurgery. You can read the open access paper here.

Read More »Reversibility, Colds, and Neurosurgery

In My Own Blood I Have Written The Things Important To Me

Adrien Locatelli, a French teenager claims to have injected DNA strands encoding verses from the Bible and the Quran in his thighs.

“I did this experiment only for the symbol of peace between religions and science … It’s just symbolic.” he told Motherboard. Sri Kosuri, a UCLA biochemist working on DNA for data storage and quoted in the paper was not amused, tweeting “2018 can’t end soon enough”.

Peak 2018, an inspiring science project, or something else? I will argue for the third option.

Read More »In My Own Blood I Have Written The Things Important To Me

Gene-Editing Mosquitoes at The European Youth Event 2018

By Jonathan Pugh

 

The below is a slightly extended version of my two 5min presentations at the European Youth Event 2018, at the European Parliament in Strasbourg. I was asked to present on the following questions:

 

  1. What are the ethical issues surrounding gene-editing, particularly with respect to eradicating mosquitoes?

 

  1. Should the EU legislate on gene-editing mosquitoes?

 

Read More »Gene-Editing Mosquitoes at The European Youth Event 2018

Guest Post: Mind the accountability gap: On the ethics of shared autonomy between humans and intelligent medical devices

Guest Post by Philipp Kellmeyer

Imagine you had epilepsy and, despite taking a daily cocktail of several anti-epileptic drugs, still suffered several seizures per week, some minor, some resulting in bruises and other injuries. The source of your epileptic seizures lies in a brain region that is important for language. Therefore, your neurologist told you, epilepsy surgery – removing brain tissue that has been identified as the source of seizures in continuous monitoring with intracranial electroencephalography (iEEG) – is not viable in your case because it would lead to permanent damage to your language ability.

There is however, says your neurologist, an innovative clinical trial under way that might reduce the frequency and severity of your seizures. In this trial, a new device is implanted in your head that contains an electrode array for recording your brain activity directly from the brain surface and for applying small electric shocks to interrupt an impending seizure.

The electrode array connects wirelessly to a small computer that analyses the information from the electrodes to assess your seizure risk at any given moment in order to decide when to administer an electric shock. The neurologist informs you that trials with similar devices have achieved a reduction in the frequency of severe seizures in 50% of patients so that there would be a good chance that you benefit from taking part in the trial.

Now, imagine you decided to participate in the trial and it turns out that the device comes with two options: In one setting, you get no feedback on your current seizure risk by the device and the decision when to administer an electric shock to prevent an impending seizure is taken solely by the device.

This keeps you completely out of the loop in terms of being able to modify your behaviour according to your seizure risk and – in a sense – relegates some autonomy of decision-making to the intelligent medical device inside your head.

In the other setting, the system comes with a “traffic light” that signals your current risk level for a seizure, with green indicating a low, yellow a medium, and red a high probability of a seizure. In case of an evolving seizure, the device may additionally warn you with an alarm tone. In this scenario, you are kept in the loop and you retain your capacity to modify your behavior accordingly, for example to step from a ladder or stop riding a bike when you are “in the red.”

Read More »Guest Post: Mind the accountability gap: On the ethics of shared autonomy between humans and intelligent medical devices

In Praise of Ambivalence—“Young” Feminism, Gender Identity, and Free Speech

By Brian D. Earp (@briandavidearp)

Introduction

Alice Dreger, the historian of science, sex researcher, activist, and author of a much-discussed book of last year, has recently called attention to the loss of ambivalence as an acceptable attitude in contemporary politics and beyond. “Once upon a time,” she writes, “we were allowed to feel ambivalent about people. We were allowed to say, ‘I like what they did here, but that bit over there doesn’t thrill me so much.’ Those days are gone. Today the rule is that if someone—a scientist, a writer, a broadcaster, a politician—does one thing we don’t like, they’re dead to us.”

I’m going to suggest that this development leads to another kind of loss: the loss of our ability to work together, or better, learn from each other, despite intense disagreement over certain issues. Whether it’s because our opponent hails from a different political party, or voted differently on a key referendum, or thinks about economics or gun control or immigration or social values—or whatever—in a way we struggle to comprehend, our collective habit of shouting at each other with fingers stuffed in our ears has reached a breaking point.

It’s time to bring ambivalence back.Read More »In Praise of Ambivalence—“Young” Feminism, Gender Identity, and Free Speech

Organ Mules

Julian Savulescu

While politicians wring their hands about sensible solutions to the organ shortage, scientists are progressing with genetic manipulations that may see human organs grown in pigs.

US scientists are creating novel life forms: “human pig chimeras”. These are a blend of human and pig characteristics. They are like mules who will provide organs to us. A mule is the offspring of a male donkey (jack) and a female horse (mare). Horses and donkeys are different species, with different numbers of chromosomes but they can breed together.

In this case, they take a skin cell from a person and turn it back in time to make stem cells capable of producing any cell or tissue in the body, “induced pluripotent stem cells.” They then inject this into a pig embryo. This makes a pig human chimera.

However they do a modification to the pig embryo first. They use gene editing, or CRISPR, to knock out the pig’s genes which produce an organ, say the pancreas. The human stem cells for the pancreas then make an almost entirely human pancreas in the pig human chimera. It functions like an organ mule. (The blood vessels are still porcine.)

In this way, your skin cell could grow a new liver, heart, pancreas, or lung.

This is a technique with wider possibilities: other US teams are working on a chimera –based treatment, this time for Parkinson’s disease which will use chimeras to create human neurones.

CRISPR is also credited with enhancing the safety of this technique, with the BBC reporting  that a Harvard team were able to use the new and revolutionary technique to remove copies of a pig retrovirus.

Safety is always a major concern when science crosses new boundaries. But even if a sufficient guarantee of safety could be reached, are there ethical problems?

Read More »Organ Mules

Whose lifestyle benefits? Regulatory risk-benefit assessment of enhancement devices

Nearly everyone would agree that a device or drug that relieves pain, or alleviates symptoms of depression confers a benefit – plausibly, a substantial benefit – on its user. No matter what your goals are, no matter what you enjoy, you are likely to agree that your life will go better if you are not in pain and not depressed: whether you’re a painter, a footballer, a Sudoku-enthusiast or a musician, you will be better able to pursue your projects and engage in the activities you love. It is unlikely that you will even question whether pain relief or alleviation of depression indeed constitute benefits.

This general consensus with respect to medical benefits makes it relatively straightforward for regulators to conduct risk-benefit assessments of medical products when they decide whether a particular product can be put on the market. A very small risk of a mild rash or gastrointestinal upset, for example, will be considered reasonable in the context of effective pain relief, as long as patients or consumers are informed. Even as the risks get more significant, substantial pain relief will be considered a large enough benefit to out-weigh a range of negative side effects in many cases.

So far, so straightforward.Read More »Whose lifestyle benefits? Regulatory risk-benefit assessment of enhancement devices

Why edited embryos won’t lead to designer babies or eugenics (unless we want it too)

The UK became the first country to officially approve gene editing research in human embryos on Monday. The HFEA decision means experiments in which the genes of embryos are manipulated will likely begin at the Francis Crick Institute within the next few months.

Gene editing (GE) technologies are immensely powerful. They have already been used to manipulate mosquitos so they cannot carry diseases like malaria or Zika. They have been used in medicine to reprogram human immune cells to target cancer. When used for research purposes, they promise to greatly increase our knowledge of genetics and human heredity. This will lead to a better understanding of disease, which in turn will allow better treatments – including better drugs.

Read More »Why edited embryos won’t lead to designer babies or eugenics (unless we want it too)

The reproducibility problem and the status of bioethics

There is a long overdue crisis of confidence in the biological and medical sciences. It would be nice – though perhaps rather ambitious – to think that it could transmute into a culture of humility.

A recent comment in Nature observes that: ‘An unpublished 2015 survey by the American Society for Cell Biology found that more than two-thirds of respondents had on at least one occasion been unable to reproduce published results. Biomedical researchers from drug companies have reported that one-quarter or fewer of high-profile papers are reproducible.’

Reproducibility of results is one of the girders underpinning conventional science. The Nature article acknowledges this: it is accompanied by a cartoon showing the crumbling edifice of ‘Robust Science.’

As the unwarranted confidence of scientists teeters and falls, what will – and what should – happen to bioethics?

Read More »The reproducibility problem and the status of bioethics

Gene editing and eugenics

A study published last week in the journal Cell has led to speculation that a powerful new gene editing technique is about to be developed.

Gene editing has received widespread media coverage over the past few months. Most of the excitement has centred on a specific gene editing technique, the CRISPR-cas9 system. Research conducted with CRISPR-cas9 on human embryos has been highly controversial, at least partly because some people fear it will lead to gene editing being used to alter the human germline for clinical applications, and will have unpredictable effects on future generations.

Read More »Gene editing and eugenics