Biotechnology

Cross-Post: The Moral Status of Human-Monkey Chimeras

Written by Julian Savulescu and Julian Koplin 

This article was first published on Pursuit. Read the original article.

The 1968 classic Planet of the Apes tells the story of the Earth after a nuclear war destroys human civilisation. When three astronauts return to our planet after a long space voyage, they discover that humans have lost the power of verbal communication and live much like apes currently do.

Meanwhile, non-human primates have evolved speech and other human-like abilities, and are now running the earth with little regard for human life.

The astronaut George Taylor, played by Charlton Heston, is rendered temporarily mute when he is shot in the throat and captured. In one scene he is brought before the Apes, as he appears more intelligent than other humans.

He regains the power of speech, and his first words are: Take your stinking paws off me, you damned dirty ape.”

Planet of the Apes may be fiction, but this month the world’s first human-monkey lifeforms were created by Juan Carlos Belmonte at the Salk Institute for Biological Studies in the US, using private funding. Professor Belmonte and his group injected stem cells from the skin of a human foetus into a monkey embryo.

This part-human lifeform is called a chimera.

If implanted into a monkey uterus, the chimera could theoretically develop into a live-born animal that has cells from both a monkey and a human.

While it has been possible to make chimeras for more than 20 years using a different technique that involves fusing the embryos of two animals together, this technique has not been used in humans. It has been used to create novel animals like the geep – a fusion of a sheep and goat embryo.

Professor Belmonte used a different technique– called “blastocyst complementation” – which is more refined. It enables greater control over the number of human cells in the chimera.

But why is this research being done?

Continue reading

Cross-Post: Self-experimentation with vaccines

By Jonathan Pugh, Dominic Wilkinson and Julian Savulescu.

This is a crosspost from the Journal of Medical Ethics Blog.

This is an output of the UKRI Pandemic Ethics Accelerator project.

 

A group of citizen scientists has launched a non-profit, non-commercial organisation named ‘RaDVaC’, which aims to rapidly develop, produce, and self-administer an intranasally delivered COVID-19 vaccine. As an open source project, a white paper detailing RaDVaC’s vaccine rationale, design, materials, protocols, and testing is freely available online. This information can be used by others to manufacture and self-administer their own vaccines, using commercially available materials and equipment.

Self-experimentation in science is not new; indeed, the initial development of some vaccines depended on self-experimentation. Historically, self-experimentation has led to valuable discoveries. Barry Marshall famously shared the Nobel Prize in 2005 for his work on the role of the bacterium Helicobacter pylori, and its role in gastritis –this research involved a self-experiment in 1984 that involved Marshall drinking a prepared mixture containing the bacteria, causing him to develop acute gastritis. This research, which shocked his colleagues at the time, eventually led to a fundamental change in the understanding of gastric ulcers, and they are now routinely treated with antibiotics. Today, self-experimentation is having something of a renaissance in the so-called bio-hacking community. But is self-experimentation to develop and test vaccinations ethical in the present pandemic? In this post we outline two arguments that might be invoked to defend such self-experimentation, and suggest that they are each subject to significant limitations. Continue reading

Regulating The Untapped Trove Of Brain Data

Written by Stephen Rainey and Christoph Bublitz

Increasing use of brain data, either from research contexts, medical device use, or in the growing consumer brain-tech sector raises privacy concerns. Some already call for international regulation, especially as consumer neurotech is about to enter the market more widely. In this post, we wish to look at the regulation of brain data under the GDPR and suggest a modified understanding to provide better protection of such data.

In medicine, the use of brain-reading devices is increasing, e.g. Brain-Computer-Interfaces that afford communication, control of neural or motor prostheses. But there is also a range of non-medical applications devices in development, for applications from gaming to the workplace.

Currently marketed ones, e.g. by Emotiv, Neurosky, are not yet widespread, which might be owing to a lack of apps or issues with ease of use, or perhaps just a lack of perceived need. However, various tech companies have announced their entrance to the field, and have invested significant sums. Kernel, a three year old multi-million dollar company based in Los Angeles, wants to ‘hack the human brain’. More recently, they are joined by Facebook, who want to develop a means of controlling devices directly with data derived from the brain (to be developed by their not-at-all-sinister sounding ‘Building 8’ group). Meanwhile, Elon Musk’s ‘Neuralink’ is a venture which aims to ‘merge the brain with AI’ by means of a ‘wizard hat for the brain’. Whatever that means, it’s likely to be based in recording and stimulating the brain.

Continue reading

Neurointerventions, Disrespectful Messages, and the Right to be Listened to

Written by Gabriel De Marco

Neurointerventions can be roughly described as treatments or procedures that act directly on the physical properties of the brain in order to affect the subject’s psychological characteristics. The ethics of using neurointerventions can be quite complicated, and much of the discussion has revolved around the use of neurointerventions to improve the moral character of the subjects. Within this debate, there is a sub-debate concerning the use of enhancement techniques on criminal offenders. For instance, some jurisdictions make use of chemical castration, intended to reduce the subjects’ level of testosterone in order to reduce the likelihood of further sexual offenses. One particularly thorny question regards the use of neurointerventions on offenders without their consent. Here, I focus on just one version of one objection to the use of non-consensual neurocorrectives (NNs).

According to one style of objection, NNs are always impermissible because they express a disrespectful message. To be clear, the style objection I consider does not appeal to the potential consequences of expressing this message; rather, it relies on the claim that there is something intrinsic to the expression of such a message that gives us a reason (or reasons) for not performing an action that would express this message. For the use of non-consensual neurocorrectives, this reason (or set of reasons) is strong enough to make NNs impermissible. The particular version of this objection that I focus on claims that the disrespectful message is that the offender does not have a right to be listened to.

Continue reading

Reversibility, Colds, and Neurosurgery

By Jonny Pugh

This blog was originally published on the Journal of Medical Ethics Blog

 

Happy new year to readers of the blog!

I always approach the new year with some trepidation. This is not just due to the terrible weather, or even my resolution to take more exercise (unfortunately in the aforementioned terrible weather). Instead, I approach January with a sense of dread because it is always when I seem to come down with the common cold.

In my recent research, I have been interested in the nature and moral significance of reversibility, and the common cold is an interesting case study of this concept. In this blog, I will use this example to very briefly preview a couple of points that I make in a forthcoming open access article about reversibility in the context of psychiatric neurosurgery. You can read the open access paper here.

Continue reading

In My Own Blood I Have Written The Things Important To Me

Adrien Locatelli, a French teenager claims to have injected DNA strands encoding verses from the Bible and the Quran in his thighs.

“I did this experiment only for the symbol of peace between religions and science … It’s just symbolic.” he told Motherboard. Sri Kosuri, a UCLA biochemist working on DNA for data storage and quoted in the paper was not amused, tweeting “2018 can’t end soon enough”.

Peak 2018, an inspiring science project, or something else? I will argue for the third option.

Continue reading

Gene-Editing Mosquitoes at The European Youth Event 2018

By Jonathan Pugh

 

The below is a slightly extended version of my two 5min presentations at the European Youth Event 2018, at the European Parliament in Strasbourg. I was asked to present on the following questions:

 

  1. What are the ethical issues surrounding gene-editing, particularly with respect to eradicating mosquitoes?

 

  1. Should the EU legislate on gene-editing mosquitoes?

 

Continue reading

Guest Post: Mind the accountability gap: On the ethics of shared autonomy between humans and intelligent medical devices

Guest Post by Philipp Kellmeyer

Imagine you had epilepsy and, despite taking a daily cocktail of several anti-epileptic drugs, still suffered several seizures per week, some minor, some resulting in bruises and other injuries. The source of your epileptic seizures lies in a brain region that is important for language. Therefore, your neurologist told you, epilepsy surgery – removing brain tissue that has been identified as the source of seizures in continuous monitoring with intracranial electroencephalography (iEEG) – is not viable in your case because it would lead to permanent damage to your language ability.

There is however, says your neurologist, an innovative clinical trial under way that might reduce the frequency and severity of your seizures. In this trial, a new device is implanted in your head that contains an electrode array for recording your brain activity directly from the brain surface and for applying small electric shocks to interrupt an impending seizure.

The electrode array connects wirelessly to a small computer that analyses the information from the electrodes to assess your seizure risk at any given moment in order to decide when to administer an electric shock. The neurologist informs you that trials with similar devices have achieved a reduction in the frequency of severe seizures in 50% of patients so that there would be a good chance that you benefit from taking part in the trial.

Now, imagine you decided to participate in the trial and it turns out that the device comes with two options: In one setting, you get no feedback on your current seizure risk by the device and the decision when to administer an electric shock to prevent an impending seizure is taken solely by the device.

This keeps you completely out of the loop in terms of being able to modify your behaviour according to your seizure risk and – in a sense – relegates some autonomy of decision-making to the intelligent medical device inside your head.

In the other setting, the system comes with a “traffic light” that signals your current risk level for a seizure, with green indicating a low, yellow a medium, and red a high probability of a seizure. In case of an evolving seizure, the device may additionally warn you with an alarm tone. In this scenario, you are kept in the loop and you retain your capacity to modify your behavior accordingly, for example to step from a ladder or stop riding a bike when you are “in the red.”

Continue reading

In Praise of Ambivalence—“Young” Feminism, Gender Identity, and Free Speech

By Brian D. Earp (@briandavidearp)

Introduction

Alice Dreger, the historian of science, sex researcher, activist, and author of a much-discussed book of last year, has recently called attention to the loss of ambivalence as an acceptable attitude in contemporary politics and beyond. “Once upon a time,” she writes, “we were allowed to feel ambivalent about people. We were allowed to say, ‘I like what they did here, but that bit over there doesn’t thrill me so much.’ Those days are gone. Today the rule is that if someone—a scientist, a writer, a broadcaster, a politician—does one thing we don’t like, they’re dead to us.”

I’m going to suggest that this development leads to another kind of loss: the loss of our ability to work together, or better, learn from each other, despite intense disagreement over certain issues. Whether it’s because our opponent hails from a different political party, or voted differently on a key referendum, or thinks about economics or gun control or immigration or social values—or whatever—in a way we struggle to comprehend, our collective habit of shouting at each other with fingers stuffed in our ears has reached a breaking point.

It’s time to bring ambivalence back. Continue reading

Organ Mules

Julian Savulescu

While politicians wring their hands about sensible solutions to the organ shortage, scientists are progressing with genetic manipulations that may see human organs grown in pigs.

US scientists are creating novel life forms: “human pig chimeras”. These are a blend of human and pig characteristics. They are like mules who will provide organs to us. A mule is the offspring of a male donkey (jack) and a female horse (mare). Horses and donkeys are different species, with different numbers of chromosomes but they can breed together.

In this case, they take a skin cell from a person and turn it back in time to make stem cells capable of producing any cell or tissue in the body, “induced pluripotent stem cells.” They then inject this into a pig embryo. This makes a pig human chimera.

However they do a modification to the pig embryo first. They use gene editing, or CRISPR, to knock out the pig’s genes which produce an organ, say the pancreas. The human stem cells for the pancreas then make an almost entirely human pancreas in the pig human chimera. It functions like an organ mule. (The blood vessels are still porcine.)

In this way, your skin cell could grow a new liver, heart, pancreas, or lung.

This is a technique with wider possibilities: other US teams are working on a chimera –based treatment, this time for Parkinson’s disease which will use chimeras to create human neurones.

CRISPR is also credited with enhancing the safety of this technique, with the BBC reporting  that a Harvard team were able to use the new and revolutionary technique to remove copies of a pig retrovirus.

Safety is always a major concern when science crosses new boundaries. But even if a sufficient guarantee of safety could be reached, are there ethical problems?

Continue reading

Authors

Affiliations