Skip to content

Embryology

Cross Post: UK Gene Editing Breakthrough Could Land an Aussie in Jail for 15 Years: Here’s Why Our Laws Need to Catch Up

  • by

Written by Dr  Research Fellow in Biomedical Ethics, Murdoch Childrens Research Institute, and Professor  Uehiro Chair in Practical Ethics,Visiting Professor in Biomedical Ethics, Murdoch Childrens Research Institute and Distinguished Visiting Professor in Law, Melbourne University, University of Oxford

This article was originally published on The Conversation

 

One of the greatest mysteries in life is why only about one in three embryos formed naturally ever go on to produce a baby. Most miscarry. By genetically engineering human embryos, scientists in the UK have identified a key gene in enabling embryos to develop.

Kathy Niakan, of the Francis Crick Institute in London, led a team which used gene editing technique CRISPR to investigate the role of a particular gene in the development of embryos. The study could potentially lead to better understanding of miscarriage, and hopefully prevention of it, and improve treatment of infertility.

However, this ground-breaking research would be illegal in Australia. Scientists doing this in Australia could be imprisoned. It’s time to review Australia’s laws in this area, which are 15 years old.Read More »Cross Post: UK Gene Editing Breakthrough Could Land an Aussie in Jail for 15 Years: Here’s Why Our Laws Need to Catch Up

Engineering a Consensus:   Edit Embryos for Research, Not Reproduction

Written by Dr Chris Gyngell, Dr Tom Douglas and Professor Julian Savulescu

A crucial international summit on gene editing continues today in Washington DC. Organised by the US National Academy of Sciences, National Academy of Medicine, the Chinese Academy of Sciences, and the U.K.’s Royal Society, the summit promises to be a pivotal point in the history of the gene editing technologies.

Gene editing (GE) is a truly revolutionary technology, potentially allowing the genetic bases of life to be manipulated at will. It has already been used to create malaria-fighting mosquitoes, drought resistant wheat, hornless cows and cancer killing immune cells. All this despite the fact GE only become widely used in the past few years. The potential applications of GE in a decade are difficult to imagine. It may transform the food we eat, the animals we farm, and the way we battle disease.Read More »Engineering a Consensus:   Edit Embryos for Research, Not Reproduction