Skip to content

Julian Savulescu’s Posts

Families shouldn’t be allowed to veto organ donation

  • by

Written By William Isdale and Prof. Julian Savulescu

This article was originally published by The Conversation

 

Last year, an estimated 12 to 15 registered organ donors and candidates for donation had their decision thwarted by relatives. This was due to the so-called family veto, which enables family members to prevent organ donation even if the deceased person had registered to be an organ donor.

Currently, if an individual decides they don’t want to be a donor, they can register an objection that has legal protection. But the decision to be a potential donor, as registered on the Australian Organ Donation Register, has no such protection.Read More »Families shouldn’t be allowed to veto organ donation

Gene Editing: A CBC Interview of Margaret Somerville and Julian Savulescu

The following is a transcript of an interview conducted by Jim Brown from Canadian Broad Casting Corporation’s program, The 180, on 3 December between Margaret Somerville and Julian Savulescu

Margaret Somerville is the Founding Director of the Centre for Medicine, Ethics and Law, the Samuel Gale Chair in Law and Professor in the Faculty of Medicine at McGill University, Montreal. She’s also the author of the new book ‘Bird on an Ethics Wire: Battles about Values in the Culture Wars’.

Julian Savulescu is Uehiro Chair in Practical Ethics and Director of the Oxford Uehiro Centre for Practical Ethics at the University of Oxford.

JB: Julian Savulescu, if I could begin with you. You argue that there is a moral imperative for us to pursue gene editing research. Briefly, why do you think it’s so important for us to embrace this technology?

JS: Genetic engineering has been around for about 30 years, widely used in medical research, and also in agriculture, but gene editing is a new version of genetic engineering that is highly accurate, specific, and is able to modify genomes without causing side effects or damage. It’s already been used to create malaria-fighting mosquitoes, drought-resistant wheat, and in other areas of agriculture. But what’s currently being proposed is the genetic modification of human embryos, and this has caused widespread resistance. I think there’s a moral obligation to do this kind of research in the following way. This could be used to create human embryos with very precise genetic modifications, to understand how we develop, why development goes wrong, why genetic disorders occur. It could also be used to create embryonic stem cells with precise changes that might make subsequent stem cells, cancer-fighting stem cells, or even stem cells that fight aging. It could also be used to create tissue with say, changes to understand the origins of Parkinson’s disease or Alzheimer’s disease and develop drugs for the treatment of those diseases. This is what I’d call therapeutic gene editing, and because it stands to benefit millions of people who die every year of painful and debilitating conditions, we actually have a moral imperative to do it. What we ought to show more concern for and perhaps ban, is what might be called reproductive gene editing – editing embryos to create live-born babies that are free of genetic disease or perhaps more resistant to common, late-onset diseases or even enhanced in various ways. If we’re concerned about those sorts of changes in society, we can ban reproductive gene editing, yet also engage in the very beneficial research using genetically modified human embryos to study disease.

JB: And Margaret Somerville, what concerns you about this technology? 

MS: Well, I’m interested in the division that Julian makes between the reproductive gene editing and what he calls the therapeutic gene editing. I’m a little surprised that he might not agree with the reproductive gene editing – that is, you would alter the embryo’s germline, so that it wouldn’t be only altered for that embryo, but all the descendants of that embryo would be changed in the same way. And up until – actually, up until this year, there was almost universal agreement, including in some important international documents, that that was wrong, that was ethically wrong, it was a line that we must never step across, that humans have a right to come into existence with their own unique genetic heritage and other humans have no right to alter them, to design them. Julian uses the term genetic engineering – to make them, to manufacture them. Where we would disagree completely is with the setting up of what can be called human embryo manufacturing plants, that is, you would create human embryos in order to use them to make products that would benefit other people, you would use them for experimentation, for research. And Julian’s right, we could do a great deal of good doing that – but there’s a huge danger in looking only at the good that we do. And what we’re doing there is we’re using human life as a product. We’re transmitting human life with the intention of killing it by using it as a product, and I believe that’s wrong. I think that human embryos have moral status that deserves respect, which means they shouldn’t be treated just as products.

Read More »Gene Editing: A CBC Interview of Margaret Somerville and Julian Savulescu

Engineering a Consensus:   Edit Embryos for Research, Not Reproduction

Written by Dr Chris Gyngell, Dr Tom Douglas and Professor Julian Savulescu

A crucial international summit on gene editing continues today in Washington DC. Organised by the US National Academy of Sciences, National Academy of Medicine, the Chinese Academy of Sciences, and the U.K.’s Royal Society, the summit promises to be a pivotal point in the history of the gene editing technologies.

Gene editing (GE) is a truly revolutionary technology, potentially allowing the genetic bases of life to be manipulated at will. It has already been used to create malaria-fighting mosquitoes, drought resistant wheat, hornless cows and cancer killing immune cells. All this despite the fact GE only become widely used in the past few years. The potential applications of GE in a decade are difficult to imagine. It may transform the food we eat, the animals we farm, and the way we battle disease.Read More »Engineering a Consensus:   Edit Embryos for Research, Not Reproduction

Doping: Russian Cheats or a Failed System?

A stunning report from a WADA Commission, led by former head of WADA Dick Pound has made a series of allegations against Russian athletes and authorities, including that 1400 samples were deliberately destroyed ahead of a visit by WADA. It recommends the suspension of all Russian athletes over the period including the Rio Olympics, and lifetime bans for five individual athletes and five coaches. It says the London Olympics was “sabotaged”, not only by the Russian authorities, but also by the inaction of the IAAF.

While this report focuses on Russia, early independent analyses of leaked blood profiles estimated at least 1/3 of medals involve doping or raised suspicions of doping. So the problem extends way beyond Russia. Arson Wenger, Arsenal Football Club’s manager, recently claimed doping was widespread in football, a sport which has so far had few scandals.

Back in 2012, there was more confidence in the ability to enforce the rules: speaking ahead of the Olympics, the UK Minister for Sport and the Olympics Hugh Robertson  said:

“We cannot absolutely guarantee that these will be a drug-free games,” he said.

“But we can guarantee that we have got the very best system possible to try and catch anybody who even thinks of cheating.””

Mr Robertson may have been correct that it was the best system possible. But today’s report, and earlier analyses of leaked blood data show that doping is likely to have nevertheless been widespread, amongst both Russian athletes and those of other nations.

I have argued that in the light of the proven inability to enforce a zero tolerance approach to sport, we should instead take a pragmatic approach. As a very brief and incomplete overview, I argue that we should allow doping within safe, measurable physiological parameters. For example, if an athlete’s haematocrit is under say 50%, we should not worry about whether she reached that level by altitude training, hypoxic tent use, genetic good luck, or EPO. We should focus resources on drugs which are unreasonably risky for athletes, or which are against the spirit of the individual sport (by which I mean they substantially remove the human component of a given sport). The doping we allow should be supervised by a medical professional, within prescribed safe ranges, and tested by independent accredited and monitored laboratories. You can read in more detail here or throughout this blog in the Sport category.

This position remains controversial. But its opponents imagine an Eldorado where sport is mainly clean, and that the few athletes who do dope are likely to get their comeuppance. They argue that allowing doping would be unfair to clean athletes who would not be able to compete. They argue that it would push young athletes into doping. But we now know that doping is not a rare aberration. It was not rare in the 90s for cycling, and it is not rare, 20 years later for athletics.

Read More »Doping: Russian Cheats or a Failed System?

From Self-Interest to Morality: How Moral Progress Might Be Possible

One of the most stunning successes I have personally seen in my life is the emergence of the Effective Altruism movement. I remember when Will Crouch (now MacAskill) first presented 80 000 hours to our Graduate Discussion Group and Toby Ord was still a grad student. From their ideas a whole movement has emerged of brilliant young people galvanised into doing good. We are getting the brightest, best people of the current generation coming to Oxford to engage with the Centre for Effective Altruism. Almost every grad student I come across has some connection. Well done Will and Toby, and all those others who have contributed to establishing this movement

So I guess I should not have been surprised when during my visit to Harvard this week, a student contacted me from EA to give an ad hoc talk. I discovered there were cells all over the world and the movement had spread way beyond Oxford.

Anyway, I gave an impromptu talk and predictably there were many questions I could not answer satisfactorily. One the issues I covered was the need to create a new basic (or minimal) secular morality. This is necessary not only to decide what the goals of moral bioenhancement should be (my favourite current pet topic), but indeed how education should be revised and society ordered. Every society has a set of normative commitments. Ours are outdated, archaic and unfit for the challenges of a globalised, interconnected and technologically advanced world.

Read More »From Self-Interest to Morality: How Moral Progress Might Be Possible

Clone me up, Scotty: A brief satirical history of cloning and ethical progress

Julian Savulescu
@juliansavulescu

The 90s was a terrifying decade. Boris Yeltsin with his finger on the button. Fortunately he was too drunk some of the time to move. The Spice Girls. And Y2K. I bought plenty of water.

Civilisation came to the brink in 1997 when Ian Wilmut managed to play God and clone a mammal, a sheep called Dolly. International chaos ensued. The German Prime Minister said it would lead to “xeroxing people.” The European Parliament beat its breast, proclaiming cloning an affront to human dignity. It proudly asserted that every human being had a right to genetic individuality (let’s conveniently forget that 1/300 live births involve clones or identical twins that lack genetic individuality).

Read More »Clone me up, Scotty: A brief satirical history of cloning and ethical progress

Brain in a Vat: 5 Challenges for the In Vitro Brain

Julian Savulescu

@juliansavulescu

In Roald Dahl’s short story, William and Mary, William dies of cancer. But a novel procedure allows his brain, with one eye attached, to be kept functioning in a clear plastic vat. His wife convinces William’s neurosurgeon to allow her to take William (or rather his brain and eye) home with her.

When home, Mary places William in a prominent place in the sitting room from where he can survey all her actions. He had been a domineering and controlling husband. He forbade her to have a TV and to smoke. Now, Mary purchases a TV and takes up smoking, blowing smoke in the direction of William. She will punish him for his abuse and his brain may stay alive, utterly powerless, for up to 200 years.

This story was science fiction. But yesterday, the first step to creating the brain in a vat was reported in the US. Back in July 2013, scientists reported the first organ grown from stem cells: a liver. A kidney, heart and other organs have followed. The potential of these technologies to eventually provide replacement organs is also an opportunity to sweep away complex ethical issues: most obviously in avoiding the need for organ donation, but also in enhancing the ability to test drugs on lab grown organs before testing in humans- reducing the risk of harm to research participants, hopefully some day to a negligible amount.

Now, just 2 years later, the first brain has been grown in a laboratory. The organoid has been grown for 12 weeks, the equivalent of a 5 week old foetus.

Lead researcher Professor Rene Anand, from Ohio State University in the US,
said:

“It not only looks like the developing brain, its diverse cell types express nearly all genes like a brain.”

Read More »Brain in a Vat: 5 Challenges for the In Vitro Brain

Pinker Bioethics: What Should We Learn?

Julian Savulescu 
Twitter @juliansavulescu

Steven Pinker has recently written an op-ed questioning the contribution of bioethics to the safe and efficient regulation of research. This has been widely misinterpreted and criticised, though Alice Dreger has written a recent accurate blog in support of Pinker. Pinker provocatively said that bioethics should get out of the way of research. This has been interpreted to mean that we should give up ethics review of research. Nobody, not me, and not Steven Pinker, thinks we should abandon ethical review of research. He actually says, ” Of course, individuals must be protected from identifiable harm, but we already have ample safeguards for the safety and informed consent of patients and research subjects.” Pinker is objecting to the unnecessary, unproductive obstruction that much bioethics represents to good research and regulation.

I largely agree with him and have said as much myself over the years. I recently wrote a piece for the anniversary issue of the JME arguing as much. I applaud him for trying to generate some self-reflection in the field.

Read More »Pinker Bioethics: What Should We Learn?

Doping: Alive and Well in the Tour But You Won’t Hear About It

Regular readers of this blog will be familiar with my argument for legalising doping in sport, aiming to focus resources on harm reduction rather than zero tolerance. Key safeguards in this approach are (1) doping carried out under the supervision of a doctor, and (2 ) checks on athletes to ensure they maintain normal physiological ranges of relevant parameters.

Many commentators consider this approach unrealistic. But as the world’s elite riders commence the Tour de France 2015, it appears that they will be riding under something very close to that vision.

In March this year, the Cycling Independent Reform Commission published a report into current doping practices. It concludes that doping is still prevalent, with estimates from those in the sport ranging from 20 – 90% of athletes participating in doping.

However, two mechanisms within anti – doping policy, the Athlete Biological Passport, and the Therapeutic Use Exemption, appear to be functioning effectively as regulators on doping behaviour: enhancing its safety and limiting its impact, without preventing its use outright.

Read More »Doping: Alive and Well in the Tour But You Won’t Hear About It